GKP™ (W - YW)
32CrMoNiV5

An innovative steel for very deep nitriding

CONTINUOUS METALLURGICAL INNOVATION
SPECIAL STEELS DEVELOPMENT
RESEARCH SERVICE

Enhancing your performance
THE INDUSTRIAL ENVIRONMENT

Numerous products require hard surfaces resistant to abrasion coupled with structural cores. These products can be obtained with local nitriding.

Nitriding solutions offer very hard surfaces, high compressive stresses and therefore high fatigue properties. Nevertheless, the nitriding depth is often limited to 500 microns which is not suitable for numerous applications.

AUBERT&DUVAL has developed a new nitriding grade, GKP, which offers:

- deeper nitriding depth (up to 1mm),
- or reduced nitriding time for a given depth,
- increased removal stock for grinding or repairs.

This solution is used in the aerospace industry, motor racing and industrial transmissions among others.

DEVELOPMENT OF GKP GRADE

The following criteria have been taken into account in the development of this grade:

- Capable of very deep nitriding,
- Capable of the UTS and YS of the main high temperature carburized solutions (M50Nil) for instance,
- High ductility and fracture toughness,
- No modification of the nitriding process compared to other nitriding grades, like 32CDV13/33CrMoV12-9, 40CrMoV13-9…

APPLICATIONS

- Heavily loaded gears for the aerospace industry or other industrial applications,
- Shafts in the aerospace or motor racing industries,

CHEMICAL COMPOSITION

<table>
<thead>
<tr>
<th>%</th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>Cr</th>
<th>Ni</th>
<th>Mo</th>
<th>V</th>
<th>Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>min.</td>
<td>0.29</td>
<td>-</td>
<td>0.70</td>
<td>1.10</td>
<td>0.50</td>
<td>0.90</td>
<td>0.20</td>
<td>0.10</td>
</tr>
<tr>
<td>max.</td>
<td>0.36</td>
<td>0.30</td>
<td>1.20</td>
<td>1.60</td>
<td>1.00</td>
<td>1.40</td>
<td>0.40</td>
<td>0.30</td>
</tr>
</tbody>
</table>

UNS: K23280
AMS 6496 (Air Melted), 6497 (Remelted), 6498 (Double Vacuum Melted)
GKP™ (W - YW)

32CrMoNiV5

SPECIFICATIONS

- 32CrMoNiV5
- UNS: K23280
- AMS: 6496 Air melted
 6497 Remelted
 6498 Double vacuum melted

COMPARISON OF DIFFERENT STEELS

<table>
<thead>
<tr>
<th>A&D Grades</th>
<th>Designations</th>
<th>C</th>
<th>Ni</th>
<th>Cr</th>
<th>Mo</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Through hardened steel</td>
<td>RA50YW 80MoCrV42-16 1.3551 / M50 AMS: 6491</td>
<td>0.83</td>
<td>- -</td>
<td>4.15</td>
<td>4.25</td>
<td>1.00</td>
</tr>
<tr>
<td>Carburized steels</td>
<td>FADC 10NiCrMo13-5 9310 AMS: 6265</td>
<td>0.10</td>
<td>3.25</td>
<td>1.20</td>
<td>0.10</td>
<td>- -</td>
</tr>
<tr>
<td>50NILYW</td>
<td>13MoCrNiV42-46-14 M50NIL</td>
<td>0.13</td>
<td>3.40</td>
<td>4.15</td>
<td>4.25</td>
<td>1.20</td>
</tr>
<tr>
<td>Nitrided steels</td>
<td>GH4 40CrMoV13-9 1.8523</td>
<td>0.40</td>
<td>- -</td>
<td>3.00</td>
<td>1.00</td>
<td>0.20</td>
</tr>
<tr>
<td>GKH 33CrMoV12-9</td>
<td>AMS: 6481</td>
<td>0.33</td>
<td>- -</td>
<td>3.00</td>
<td>1.00</td>
<td>0.20</td>
</tr>
<tr>
<td>GKP (W – YW)</td>
<td>32CrMoNiV5 AMS: 6496-6497-6498</td>
<td>0.32</td>
<td>0.80</td>
<td>1.40</td>
<td>1.20</td>
<td>0.30</td>
</tr>
</tbody>
</table>
GKP™ (W - YW) 32CrMoNiV5

COMPARISON OF THE CORE CHARACTERISTICS OF DIFFERENT STEELS

<table>
<thead>
<tr>
<th>A&D Grades</th>
<th>Heat treatment</th>
<th>UTS (MPa / Ksi)</th>
<th>0.2% YS (MPa / Ksi)</th>
<th>E (%)</th>
<th>KV (J / ft.lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Through Hardened steel RA50YW</td>
<td>1100°C / Gas -75°C 3 x 550°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carburized steels FADC (W - YW)</td>
<td>825°C / Oil -75°C 150°C</td>
<td>1150 / 167</td>
<td>900 / 131</td>
<td>14</td>
<td>140 / 103</td>
</tr>
<tr>
<td></td>
<td>50NILYW</td>
<td>1400 / 203</td>
<td>1200 / 174</td>
<td>15</td>
<td>12 / 9</td>
</tr>
<tr>
<td>Nitrided steels GH4 (W - YW)</td>
<td>825°C / Oil 600°C</td>
<td>1400 / 203</td>
<td>1150 / 167</td>
<td>13</td>
<td>40 / 29</td>
</tr>
<tr>
<td></td>
<td>GKH (W - YW)</td>
<td>600°C</td>
<td>1250 / 181</td>
<td>1060 / 154</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>640°C</td>
<td>1080 / 157</td>
<td>900 / 131</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>GKP (W - YW)</td>
<td>600°C</td>
<td>1430 / 207</td>
<td>1280 / 186</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>640°C</td>
<td>1250 / 181</td>
<td>1075 / 156</td>
<td>16</td>
</tr>
</tbody>
</table>

COMPARISON OF SURFACE CHARACTERISTICS

<table>
<thead>
<tr>
<th>A&D Grades</th>
<th>Heat treatment</th>
<th>Use temperature</th>
<th>Surface hardness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Through Hardened steel RA50YW</td>
<td>1100°C / Gas -75°C 3 x 550°C</td>
<td>< 450°C</td>
<td>HRC: 60 / 63</td>
</tr>
<tr>
<td>Carburized steels FADC (W - YW)</td>
<td>825°C / Oil -75°C 150°C</td>
<td>< 150°C</td>
<td>HRC ≥ 60</td>
</tr>
<tr>
<td></td>
<td>50NILYW</td>
<td>< 400°C</td>
<td>HRC ≥ 60</td>
</tr>
<tr>
<td>Nitrided steels GH4 (W - YW)</td>
<td>825°C / Oil 600°C</td>
<td>< 450°C</td>
<td>HV: 850</td>
</tr>
<tr>
<td></td>
<td>GKH (W - YW)</td>
<td>< 450°C</td>
<td>HV: 850</td>
</tr>
<tr>
<td></td>
<td>GKP (W - YW)</td>
<td>< 450°C</td>
<td>HV: 900</td>
</tr>
</tbody>
</table>

UNS: K23280
AMS 6496 (Air Melted), 6497 (Remelted), 6498 (Double Vacuum Melted)
GKP™ (W - YW) 32CrMoNiV5

MAIN PHYSICAL PROPERTIES

Density: 7.8

Mean coefficient of Thermal Expansion:

<table>
<thead>
<tr>
<th>Temperature range</th>
<th>10^(-6)/m/m/°C</th>
<th>10^(-6)/in/in/°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 / 100</td>
<td>11.8</td>
<td>6.55</td>
</tr>
<tr>
<td>20 / 500</td>
<td>13.6</td>
<td>7.55</td>
</tr>
</tbody>
</table>

CCT DIAGRAM

CCT/TTT - Diagram

Temperature °C

Time min

Bainite
Pearlite

UNS: K23280
AMS 6496 (Air Melted), 6497 (Remelted), 6498 (Double Vacuum Melted)
GKP™ (W - YW) 32CrMoNiV5

TRANSFORMATION POINTS

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac1</td>
<td>760°C / 1400°F</td>
<td></td>
</tr>
<tr>
<td>Ac3</td>
<td>850°C / 1562°F</td>
<td></td>
</tr>
</tbody>
</table>

MACROSTRUCTURE

The segregations observed on the ingots are well within the limits of the aerospace industry requirements:

<table>
<thead>
<tr>
<th>Class</th>
<th>Condition</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Freckles</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>White spots</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>Radial segregation</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>Ring pattern</td>
<td>B</td>
</tr>
</tbody>
</table>

Macrostructure according to ASTM A 604
GKP™ (W - YW) 32CrMoNiV5

MICROGRAPHIC CHARACTERIZATION

Annealed condition
Heat to 875°C / 1607°F followed by slow cooling.
Brinell hardness: 240
GKP™ (W - YW)

Heat treated condition
- 940°C / 1724°F
- Oil quench
- Tempering 640°C / 1184°F
- Nitriding

Typical aspect of the structure
(Nitrided Layer)

Examples of deep nitriding

![Graph showing micro hardness (HV 0.5) vs depth (mm)]

- Depth : 0.9 mm
- Depth : 0.4 mm

UNS: K23280
AMS 6496 (Air Melted), 6497 (Remelted), 6498 (Double Vacuum Melted)
GKP™ (W - YW) 32CrMoNiV5

MECHANICAL CHARACTERISTICS VARIANCE WITH THE TEMPERING TEMPERATURE

Heat Treatment
- 940°C / 1724°F – 30 min
- Oil quenching
- Tempering

![Graph showing mechanical characteristics variance with tempering temperature](Graph.png)
GKP™ (W - YW) 32CrMoNiV5

Rotative bending
R = -1
Kt = 1.035
Polished samples
Fatigue limit for 2.10⁷ cycles, 50% chance of failure

Heat treatment:
- 940°C / 1724°F – 30 min
- Oil quenching
- Tempering 630°C / 1166°F – 2 hrs
- Nitriding:
 T: ≤ 530°C / 986°F
 Duration: ≥ 180 hrs
 Depth: 0.8 mm

Mechanical characteristics
- UTS: 1348 MPa
- 0.2 YS: 1248 MPa

- Fatigue limit 2.10⁷ cycles:
 - Base metal: 840 MPa / 122 Ksi
 - Nitriding: > 1360 MPa / 197 Ksi
GKP™ (W - YW) 32CrMoNiV5

Rotative bending S/N curve – Base metal

Rotative bending S/N curve – Nitriding

UNS: K23280
AMS 6496 (Air Melted), 6497 (Remelted), 6498 (Double Vacuum Melted)
Comparison of the fatigue limit of different surface hardenable steels

- **R** = -1
- **Kt** = 1.035
- Polished samples
- Fatigue limit for 2.10^7 cycles, 50% chance of failure

<table>
<thead>
<tr>
<th>A&D Grades</th>
<th>Heat treatment</th>
<th>UTS (MPa / Ksi)</th>
<th>0.2% YS (MPa / Ksi)</th>
<th>Lf core material (MPa / Ksi)</th>
<th>Lf case hardened (MPa / Ksi)</th>
<th>Case depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Through Hardened steel</td>
<td>RA50YW</td>
<td>1100°C / Gas 3 x 550°C</td>
<td>HRC: 60 - 63</td>
<td>950 / 138</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Carburized steels</td>
<td>FADCW</td>
<td>825°C / Oil -75°C 150°C</td>
<td>1150 467</td>
<td>900 131</td>
<td>600 / 87</td>
<td>1050 / 152</td>
</tr>
<tr>
<td>50NILYW</td>
<td>1100°C / Oil -75°C 3 x 540°C</td>
<td>1400 203</td>
<td>1200 174</td>
<td>750 / 109</td>
<td>1075 / 156</td>
<td>DC550: 1.3 mm</td>
</tr>
<tr>
<td>Nitrided steels</td>
<td>GH4YW</td>
<td>825°C / Oil 600°C</td>
<td>1400 203</td>
<td>1150 167</td>
<td>810 / 112</td>
<td>1150 / 167</td>
</tr>
<tr>
<td>GKYHW</td>
<td>920°C / Oil</td>
<td>1250 181</td>
<td>1060 164</td>
<td>825 / 120</td>
<td>> 1200 > 174</td>
<td>HVACore + 100: 0.6 mm</td>
</tr>
<tr>
<td>GKPYW</td>
<td>940°C / Oil 640°C</td>
<td>1250 181</td>
<td>1075 156</td>
<td>840 / 122</td>
<td>> 1330 > 193</td>
<td>HVACore + 100: 0.8 mm</td>
</tr>
</tbody>
</table>

Effect of residual stresses in nitrided layer
SURFACE PROPERTIES

Compressive stress in a nitrided layer

![Graph showing stress vs depth](image)

Comments:
The profiles shown here are indicative. Any profile can be obtained.
The extent of the nitrided layer allows:
1. Replacing carburized solutions with nitrided solutions
 (increased fatigue life, simplified fabrication process, increased working temperatures…),
2. Increased removal stock for grinding.
GKP™ (W - YW) 32CrMoNiV5

NOTES:

UN: K23280
AMS 6496 (Air Melted), 6497 (Remelted), 6498 (Double Vacuum Melted)
GKP™ (W - YW) 32CrMoNiV5

NOTES:

UN S: K23280
AMS 6496 (Air Melted), 6497 (Remelted), 6498 (Double Vacuum Melted)
The information and the data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes.

Aubert & Duval's liability shall not extend, under any circumstances, to the choice of the Product and its consequences.

Design: affinity* ftp**
Aubert & Duval © 02/2012

Contact us:
www.aubertduval.com